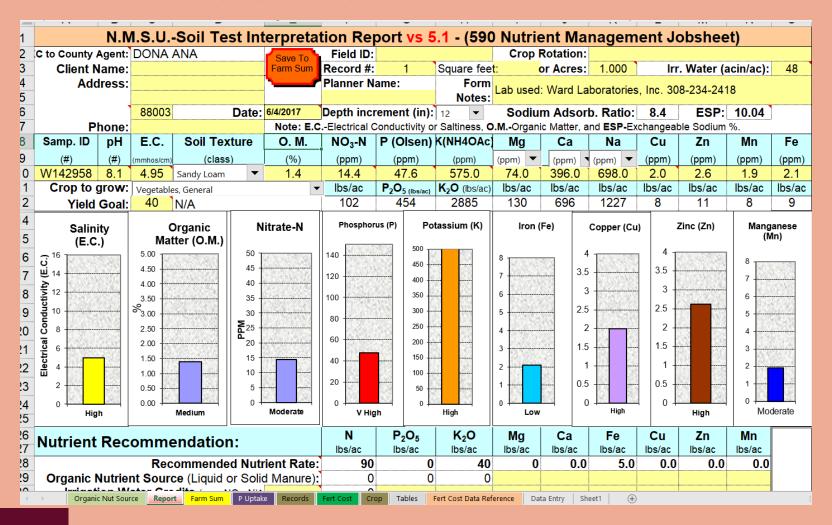
#### College of Agricultural, Consumer and Environmental Sciences

All About Discovery! ™ New Mexico State University aces.nmsu.edu




## Irrigation: Water Quality &

#### Testing

# Robert Flynn, Ph.D Extension Plant Sciences

**About the College:** The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs.

#### NMSU's Soil Workbook





# NMSU Irrigation H<sub>2</sub>O Quality Workbook

|    | Α          | В                                 | С     | D                   | Е              | F |
|----|------------|-----------------------------------|-------|---------------------|----------------|---|
| 1  | NTN        | <b>Irrigation Water Analys</b>    |       |                     |                |   |
| 2  | STATE      |                                   |       | Interpretation      |                |   |
| 3  | UNIVERSITY |                                   |       | Robert Flynr        |                |   |
| 4  | _          |                                   |       | rflynn@nmsu.edu     |                |   |
| 5  |            |                                   |       | 575-748-1228        |                |   |
| 6  |            | <b>Client Contact Information</b> |       | Legend              |                |   |
| 7  |            |                                   |       |                     | No limitations |   |
| 8  |            |                                   |       | Increasing problems |                |   |
| 9  |            |                                   |       | Severe Limitations  |                |   |
| 10 |            |                                   |       |                     | No Data        |   |
| 11 | Lab ID     |                                   |       |                     |                |   |
| 12 | Method     | Irrigation Water Test Result      | Value | Units               | Interpretation |   |



#### What about water?





Sample your water for limitations and management

All About Discovery! ™ New Mexico State University aces.nmsu.edu

#### **Irrigation Water Tests**

- pH
- Nitrate-N
- Electrical Conductivity
  - TDS (total dissolved solids)
- Ca, Mg, Na

- Chloride
- Boron
- Potassium
- Sulfate
- Bicarbonate

#### NMSU H<sub>2</sub>O Workbook

- Salinity Rating
- Infiltration Concerns
- Specific Ion Effects
- Nutrient Contribution
- Leaching fraction
  - By crop

|   | 12                              | Method                                                                                  | Irrigation Water Test Result                      | Value     | Units      |       | Interpretation     | • |
|---|---------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------|-----------|------------|-------|--------------------|---|
|   | 13                              |                                                                                         |                                                   |           |            |       | Potential Problem  |   |
|   | 14                              | 150.1                                                                                   | pH                                                | 7         | Unitless   | •     |                    |   |
|   | 15                              |                                                                                         | SALINITY                                          |           |            |       |                    |   |
|   | 16                              | 2510B                                                                                   | Electrical Conductivity†                          | 2.5       | mmhos/cr   | m     |                    |   |
|   | 17                              | SM 2540C                                                                                | Total Dissolved Solids++                          | 1476      | mg/l (ppm  | 1)    |                    |   |
|   | 18                              |                                                                                         | ††Estimated e.c. given TDS                        | 2.3       | mmhos/cr   | m     |                    |   |
|   | 19                              |                                                                                         | †Estimated TDS given E.C.                         | 1574      | mg/l (ppm  | 1)    |                    |   |
|   | 20                              |                                                                                         |                                                   |           |            |       |                    |   |
|   | 21                              |                                                                                         | INFILTRATION CONCE                                | RNS       |            |       |                    |   |
|   | 22                              | 200.7                                                                                   | Calcium                                           | 359       | mg/l       | ▼     |                    |   |
|   | 23                              | 200.7                                                                                   | Magnesium                                         | 144       | mg/l       | •     |                    |   |
|   | 24                              | 200.7                                                                                   | Sodium                                            | 101       | mg/l       | •     |                    |   |
|   | 25                              |                                                                                         |                                                   |           |            |       |                    |   |
|   | 26                              |                                                                                         | SAR                                               | 1.1       |            |       |                    |   |
|   | 27                              |                                                                                         | SAR adjusted                                      | 2.1       |            |       |                    |   |
|   | 28                              | SPECIFIC ION EFFECTS                                                                    |                                                   |           |            |       |                    |   |
|   | 29                              |                                                                                         | Sodium (Sprinkler Irrigation)                     | 4.4       | meq/l      |       |                    |   |
|   | 30                              |                                                                                         | Sodium (Flood Irrigation)                         | 4.4       | meq/l      |       |                    |   |
|   | 31                              | 4500-CI_D                                                                               | Chloride                                          |           |            |       |                    |   |
|   | 32                              |                                                                                         | Flood Irrigation                                  | 105       | mg/l       | •     |                    |   |
|   | 33                              |                                                                                         | Sprinkler                                         |           |            |       |                    |   |
|   | 34                              |                                                                                         | Boron                                             | 0.09      | mg/l       | ▼     |                    |   |
|   | 35                              | 310.1                                                                                   | Bicarbonate                                       | 309       | mg/l       | •     |                    |   |
| ١ | 36                              |                                                                                         | HCO3/Ca ratio                                     | 0.28      |            |       |                    |   |
| • | 37                              |                                                                                         | Nutrient Status per Acre Inc                      | h         |            |       | pounds / acre inch |   |
|   | 38                              |                                                                                         | Sulfate                                           | 405       | mg/L       |       | 92                 |   |
|   | 39                              |                                                                                         | Nitrate                                           | 0.2       | mg/L       |       | 0.05               |   |
|   | 40                              |                                                                                         | Potassium                                         | 3         | mg/L       |       | 1                  |   |
|   | 41                              |                                                                                         | Boron                                             | 0.09      | mg/L       |       | 0.0                |   |
|   | 42                              |                                                                                         |                                                   |           |            |       |                    |   |
|   | 43                              | NRCS Suggested Leaching Fraction for Selected Crop or soil ECe and Irrigation Frequency |                                                   |           |            | uency |                    |   |
|   | 44                              | Crop                                                                                    |                                                   | Soil ECe  | Irrigation |       | ion Frequency      |   |
|   | 45                              |                                                                                         |                                                   | 90% Yield | High       |       | Low                |   |
|   | 46                              | grapes; Alamogordo                                                                      |                                                   | 2.5       | 17%        |       | 30%                |   |
|   | 47                              |                                                                                         | Estimate Consumptive Use + Leaching Fraction (ai) |           |            |       |                    |   |
|   | 48                              |                                                                                         |                                                   |           | 22         |       | 24                 |   |
|   | 49                              |                                                                                         | Total Organic Carbon                              | C 7 ! !   | mag        |       |                    |   |
|   | Report CAX Cax Graph Crop Table |                                                                                         |                                                   |           |            |       |                    |   |
|   | Ready                           |                                                                                         |                                                   |           |            |       |                    |   |
|   |                                 |                                                                                         |                                                   |           |            |       |                    |   |



# NRCS Suggested Leaching Fractions can be determined

grapes; Alamogordo



# for Selected Crop or soil ECe and Irrigation Frequency

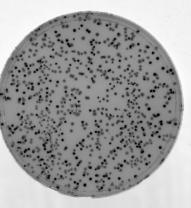
Crop Soil ECe Irrigation Frequency
90% Yield High Low
2.5 17% 30%
Crop Soil ECe Irrigation Frequency
90% Yield High Low



#### Why Wait for Problems to Show?






## Sampling

- Use a clean, triple rinsed plastic bottle of at least ½ gallon (2 liters) for all tests
- Collect after well or system has run for at least 15 minutes
- Surface water (ditch water) should be collected below water surface
- Store below 40°F if sample can not be analyzed within 3 hours.
- Check with lab for appropriate forms

#### **Biological Testing**

- Requires Sterile Bottles available from the water testing laboratories.
- Important for Drip Irrigation Systems







#### What are we looking for?

And Court over 12 Miles Co. 10

- pH
- Salinity
- Specific Ion Effects
  - -Sodium
  - Bicarbonate
  - Chloride
  - -Boron
- Other

### Water pH

- $\rho H = -log(H^+)$ 
  - -Acidic, Basic, or Neutral
- Normal Range
  - -6.5 to 8.4
  - -New Mexico (>7 pH <8.4)
- Best to measure immediately



### Water Salinity

- Presence of dissolved salts
  - -Cations (Ca<sup>++</sup>, Mg<sup>++</sup>, K<sup>+</sup>, Na<sup>+</sup>)
  - -Anions ( $HCO_3^-$ ,  $CO_3^-$ ,  $Cl^-$ ,  $SO_4^-$ )
- Measured as
  - -Electrical Conductivity (e.c.)
  - -TDS (mg/l or ppm)



## Examples of ecw

RO Reject Tap water/ Irrigation water R.O. water 0 = distilled water

## Interpreting ecw

Degree of restriction on use

None Slight - Moderate Severe

< 0.7

0.7 - 3.0

> 3.0

**UNITS:** mmhos/cm

#### Interpreting TDS

Degree of restriction on use

None Slight - Moderate Severe

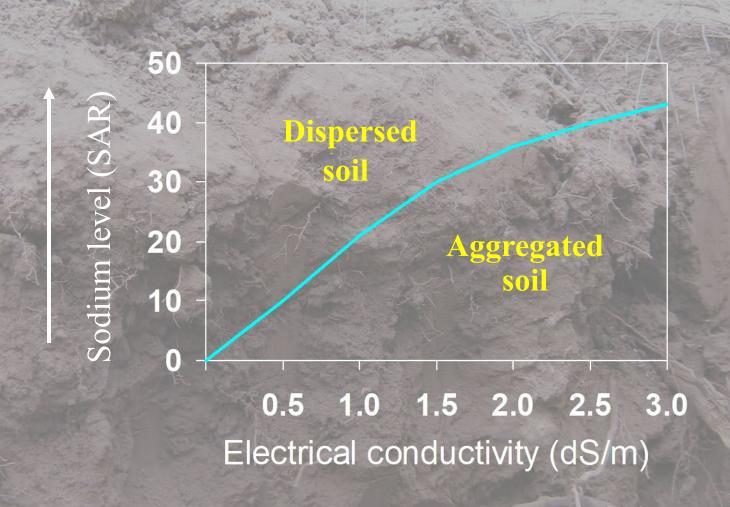
<450

450 - 2000

> 2000

UNITS: ppm or mg/l

e.c.  $X 640 \approx TDS$ 


#### Quick Test of Stability

**Unstable soil** 

Stable soil

- Mix soil (about 1tbs) with water (about ½ cup) about 1part soil:10 parts water
  - Water should be the same as water actually used in the field
  - Shake soil-water mixture
  - Wait at least 15 minutes and see if soil has settled out

# Both the amount of salts and the kind of salts affect soil structure



## Interpreting SAR & ECw

#### Degree of restriction on use

|                          | None   | Slight - Moderate | Severe |
|--------------------------|--------|-------------------|--------|
| $SAR = 0-3 \& EC_{w} =$  | >0.7   | 0.7-0.2           | <0.2   |
| $SAR = 3-6 \& EC_{w} =$  | >1.2   | 1.2-0.3           | <0.3   |
| $SAR = 6-12 \& EC_{w} =$ | >1.9   | 1.9-0.5           | <0.5   |
| $SAR = 12-20 \& EC_{w}$  | = >2.9 | 2.9–1.3           | <1.3   |
| $SAR = 20-40 \& EC_{w}$  | = >5.0 | 5.0-2.9           | <2.9   |

#### Specific Ion Effects - SAR

Degree of restriction on use

None

Slight - Moderate

Severe

**Surface Irrigation** 

<3

3 - 9

>9

#### Specific Ion Effects – Cl

Degree of restriction on use

None

Slight - Moderate

Severe

Surface Irrigation (meq/l)

<4

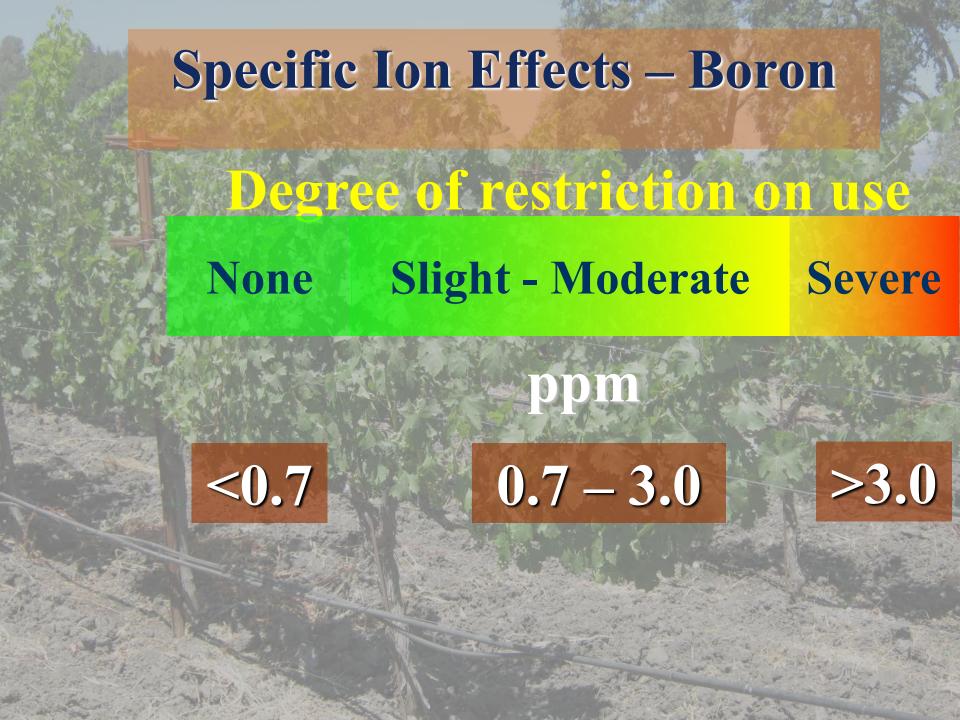
4 - 10

>10

meq Cl-/l = ppm/35.5

#### Irrigation & Na+, Cl-

- Surface Irrigation
  - Most woody species are sensitive to sodium and chloride
  - Most annual species are not sensitive


- Overhead irrigation + low humidity
  - Na<sup>+</sup> and CI may be absorbed through the leaves of sensitive plants.

#### Crop Tolerance to Na+ & Cl

| <u>5 – 10 meq/l</u> | <u>10 – 20 meq/l</u> | <u>&gt;20 meq/l</u> |  |
|---------------------|----------------------|---------------------|--|
| Grape               | Alfalfa              | Cauliflower         |  |
| Pepper              | Barley               | Cotton              |  |
| Potato              | Corn                 | Sugarbeet           |  |
| Tomato              | Cucumber             | Sunflower           |  |
|                     | Safflower            |                     |  |
|                     | Sesame               |                     |  |
|                     | Sorghum              |                     |  |

#### Grape Tolerance to Cl<sup>-</sup> (meq/l)

| Grape RS or CV     | Root Zone | Irrigation water |  |
|--------------------|-----------|------------------|--|
| Salt Creek, 1613-3 | 40        | 27               |  |
| Dog Ridge          | 30        | 20               |  |
| Thomson seedls     | 20        | 13.3             |  |
| Perlette           | 20        | 13.3             |  |
| Cardinal           | 10        | 6.7              |  |
| Black Rose         | 10        | 6.7              |  |
|                    |           |                  |  |



#### **Crop Tolerance to Boron (ppm)**

- Very Sensitive (<0.5)
  - Blackberry
- Sensitive (0.5 0.75)
  - Grape
  - Pecan
  - Onion
- Less Sensitive (0.75-1)
  - Wheat
  - Peanut
- Moderately Sensitive (1-2)
  - Pepper, red
  - Potato

- Moderately Tolerant (2 4)
  - Corn
  - Squash
- Tolerant (4-6)
  - Sorghum
  - Tomato
  - Alfalfa
- Very Tolerant (>6)
  - Cotton
  - Asparagus

# Specific Ion Effects – Bicarbonate (HCO<sub>3</sub><sup>-</sup>) Degree of restriction on use

None

Slight - Moderate

Severe

meq/l

<1.5

1.5 - 8.5

>8.5

 $meq HCO_3^-/l = ppm/61$ 



#### Clogging Hazards

- Clogging caused by:
  - Chemical
  - Physical
  - Biological
- Waters in New Mexico are hard
  - Meaning they have a high mineral content (especially calcium)
  - Some wells produce sand
  - -Some have biological concerns

- ρΗ
  - Low

< 7.0

Moderate

$$7.0 - 8.0$$

– High

>8.0







- Iron (Fe)
  - Low

<0.2 ppm (mg/l)

Moderate

0.2 - 1.5 ppm (mg/l)

- High

>1.5 ppm (mg/l)





- Manganese (Mn)
  - Low

<0.1 ppm (mg/l)

Moderate

0.1 - 1.5 ppm (mg/l)

High

>1.5 ppm (mg/l)

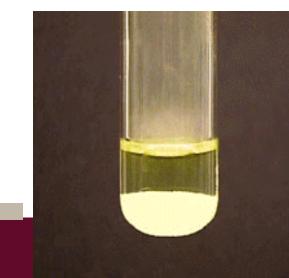




In presence of sulfides can form a black, sand-like insoluble precipitate.

- Hydrogen sulfide (H<sub>2</sub>S)
  - Low

<0.1 ppm (mg/l)


Moderate

0.1 - 2.0 ppm (mg/l)

- High

>2.0 ppm (mg/l)





- Bicarbonate & pH (above 7.5)
  - Low

<1.5 meq/l

Moderate

1.5 - 2.5 meq/l

- High

>2.5 meq/l

- o Can Cause Lime Scale
- White film around emitters
- White precipitate in flush water





#### So, which will likely clog?

#### Water 1

- EC: 2.51 mmhos/cm
- pH: 7.4
- Ca: 306 ppm
- Mg: 121 ppm
- Na: 124 ppm
- Cl: 158 ppm
- HCO<sub>3</sub>: 317 ppm
- SO<sub>4</sub>: 912 ppm
- Mn: <0.1 ppm
- <u>Fe</u>: < 0.1 ppm

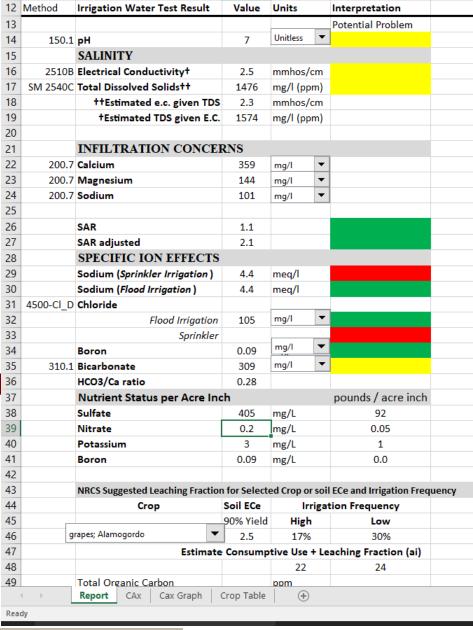
#### Water 2

- EC: 0.87 mmhos/cm
- pH: 7.7
- Ca: 44 ppm
- Mg: 16 ppm
- Na: 127 ppm
- Cl: 70 ppm
- HCO<sub>3</sub>: 122 ppm
- SO<sub>4</sub>: 226 ppm
- Mn: 2.6 ppm
- Fe: 0.65 ppm



#### Which will clog? Answer

#### Water 1


- High salt indicates some clogging potential
- Relatively high bicarbonate + high Ca suggests clogging if pH were to rise for some reason
- Fe and Mn not a problem

#### Water 2

- Low salt content indicates little clogging from salts.
- pH and bicarbonate indicates the potential to clog due to lime.
- Mn and Fe clogging potential is very high

#### NMSU H<sub>2</sub>O Workbook

- Salinity Rating
- Infiltration Concerns
- Specific Ion Effects
- Nutrient Contribution 5 3 6 3 7
- Leaching fraction
  - By crop





#### Ready for some interpretation?



#### Thank you

**rflynn@nmsu.edu** 575-748-1228

67 E. Four Dinkus Rd. Artesia, NM 88210



