#### Pest Management and Climate Change in New Mexico

Dr. Carol Sutherland

NMSU Department of Extension Plant Sciences & NM Department of Agriculture

Dr. Soum Sanogo & Dr. Brian Schutte

NMSU Department of Entomology, Plant Pathology and Weed Science





#### Outline

 Pathogen/Disease Management and Climate Change in New Mexico - *Dr. Soum Sanogo*

 Climate Change Effects on Weeds and Weed Management - *Dr. Brian Schutte*

 Climate Change vs. Producers vs. Insects: Who's Winning? - *Dr. Carol Sutherland*

#### Pathogen/Disease Management and Climate Change in New Mexico

#### Air composition *Elevated CO*<sub>2</sub>

#### Projected Changes

#### Temperature/Solar irradiance/Winds

#### Moisture/Relative humidity/Hail storms

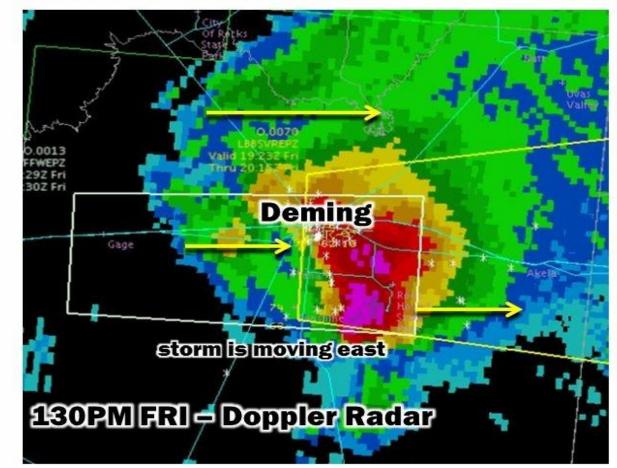
#### **Impacts of Climate Change**

Biological and Abiotic Stimulants

#### Production Environment

#### Crop Performance

**Biological and Abiotic Stresses** 


#### LARGE HAIL / INTENSE RAIN / FLASH FLOODING

#### SEVERE THUNDERSTORM IN AND SE OF DEMING, NM

Supercell Thunderstorm is moving across the Deming area at 130 pm Friday afternoon.

This is a dangerous storm. Take cover.

Seek shelter from this storm.

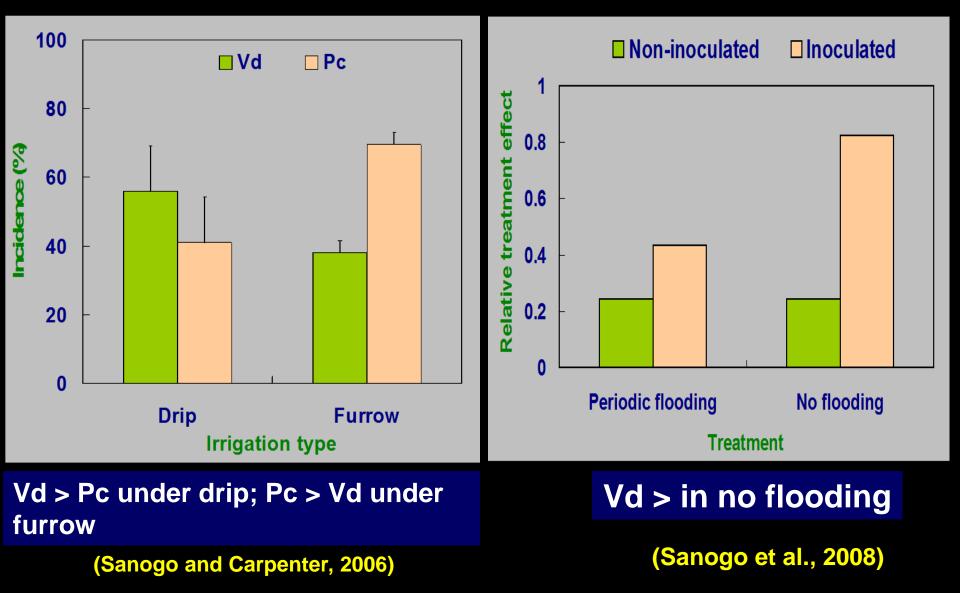


**Courtesy: Ben Etcheverry, Mizkan Americas, Deming** 

#### **Pictorial of 2015 Hail Event**

**Courtesy: Ben Etcheverry, Mizkan Americas, Deming** 

#### **Pictorial of 2015 Hail Event**


| Extent of Hail Damag     |         |         |
|--------------------------|---------|---------|
|                          | Field 1 | Field 2 |
| Foliage damage (%)       | 15-30   | 5-10    |
|                          |         |         |
| Pods with damage (Kg)    | 1.85    | 0.98    |
|                          |         |         |
| Pods with no damage (Kg) | 1.87    | 2.23    |
|                          |         |         |
|                          | ~50%    | ~70%    |

# Soil saturation Soil temperature Predisposition

**Courtesy Don Hartman** 

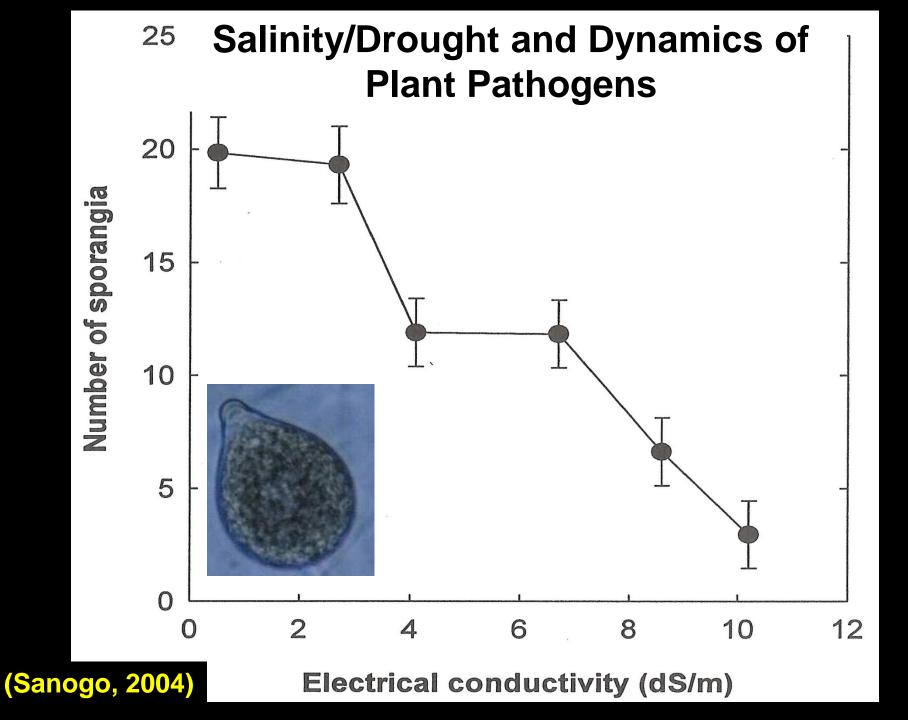
#### **Flooding and Dynamics of Plant Pathogens**

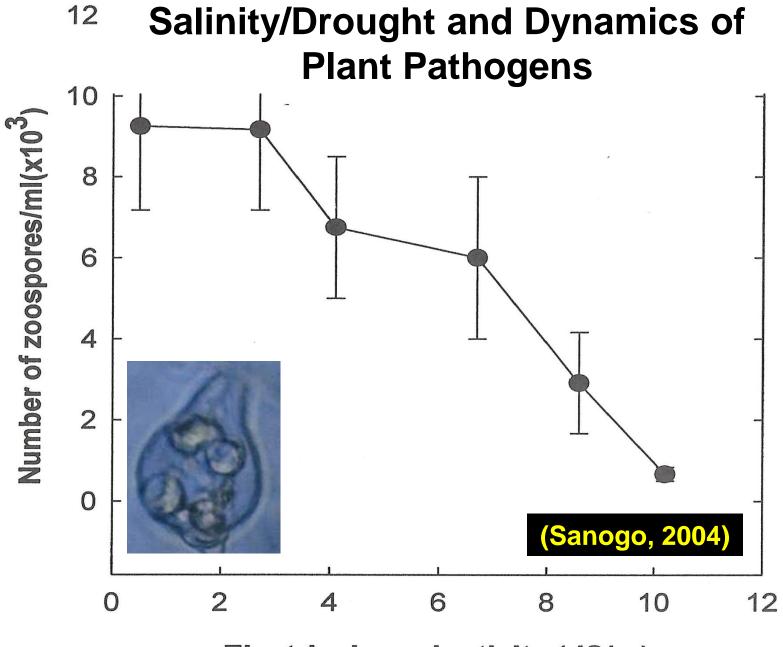
#### **Flooding and Dynamics of Plant Pathogens**



#### Hail and Disease Outbreak Relationship?

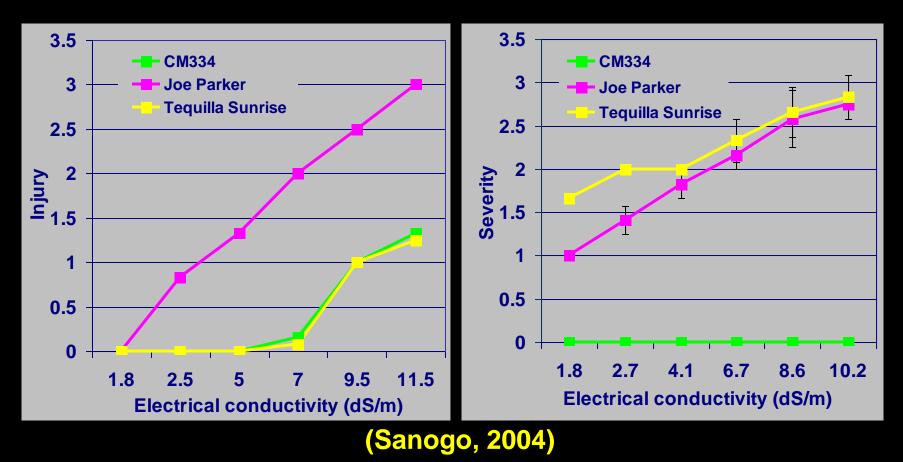
#### Mowed versus not mowed


#### Mowed and treated versus mowed and not treated




#### Mowed

| Projected Changes in<br>Production Environment<br>(Extremes) | Pathogen              |        |              |           |
|--------------------------------------------------------------|-----------------------|--------|--------------|-----------|
|                                                              | Survival              | Spread | Reproduction | Infection |
| Air composition                                              |                       |        |              |           |
| Elevated CO2                                                 |                       |        |              |           |
| Biotrophs                                                    | ✓                     | ✓      | ス            | 7         |
| Necrotrophs                                                  | ✓                     | ✓      | 7            | 7         |
| Temperature                                                  |                       |        |              |           |
| High                                                         | ✓                     | ✓      | ✓            | 7         |
| Low                                                          | ✓                     | ✓      | ✓            | 7         |
| Moisture                                                     |                       |        |              |           |
| High (flood)                                                 | <ul> <li>✓</li> </ul> |        | ✓            | 7         |
| Low (drought)                                                | ✓                     | 7      | ✓            | 7         |
| Wind and hail storms                                         | $\checkmark$          |        | $\checkmark$ | 7         |








**Electrical conductivity (dS/m)** 

# Effect of soil salinity on plant infection by *Phytophthora capsici*



Salinity promotes disease development

 Management under saline conditions: cultivars with tolerance to salinity and resistance to P. capsici

#### **Response of pathogens or diseases to salinity**

Response

77

7

K K

#### Pathogen or disease Phytophthora species Fusarium oxysporum f. sp. vasinfectum Fusarium oxysporum f. sp. radicis lycopersici Verticillium dahliae Alternaria solani

Fusarium wilt of date palm Rhizoctonia crown and root rot of table beet Fusarium crown and root rot of asparagus Fusarium wilt of cyclamen

#### **Response of pathogens to salinity**

**Increase in diseases, Why?** 

Increase plant susceptibility
 Changes in plant physiology
 Disruption of water uptake
 Decrease in tissue nutrients (like potassium)
 Increase in root exudates
 Increase in pathogen virulence

#### **Response of pathogens to salinity**

**Decrease in diseases, Why?** 

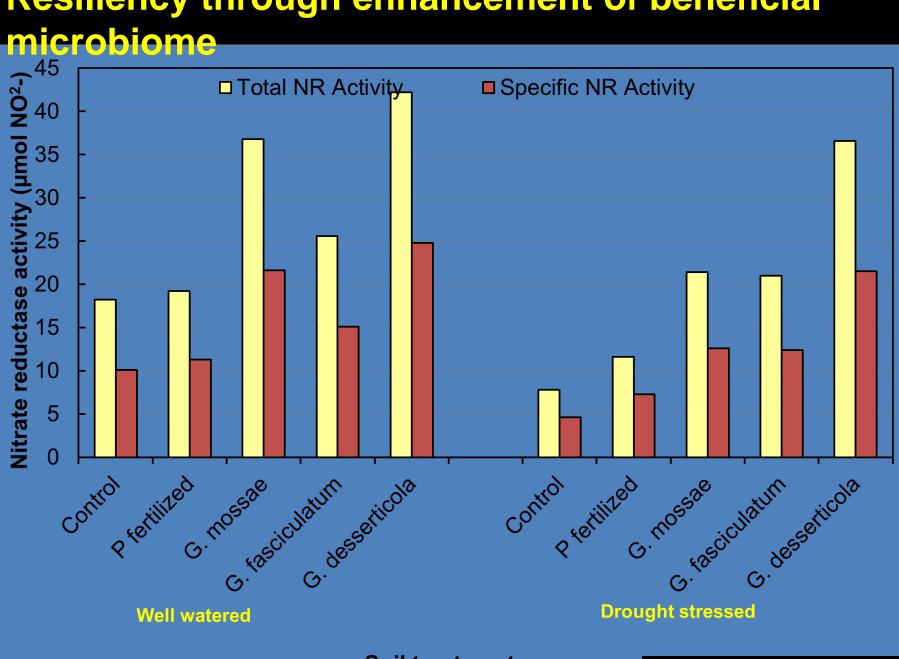
- Increase in manganese (Mn) levels in plant tissues, which induces disease resistance
- Increase in sodium and chloride levels in plant tissues

#### Endomycorrhizae

associated with ~60% of terrestrial plants (comprising 80-95% of vascular plants)

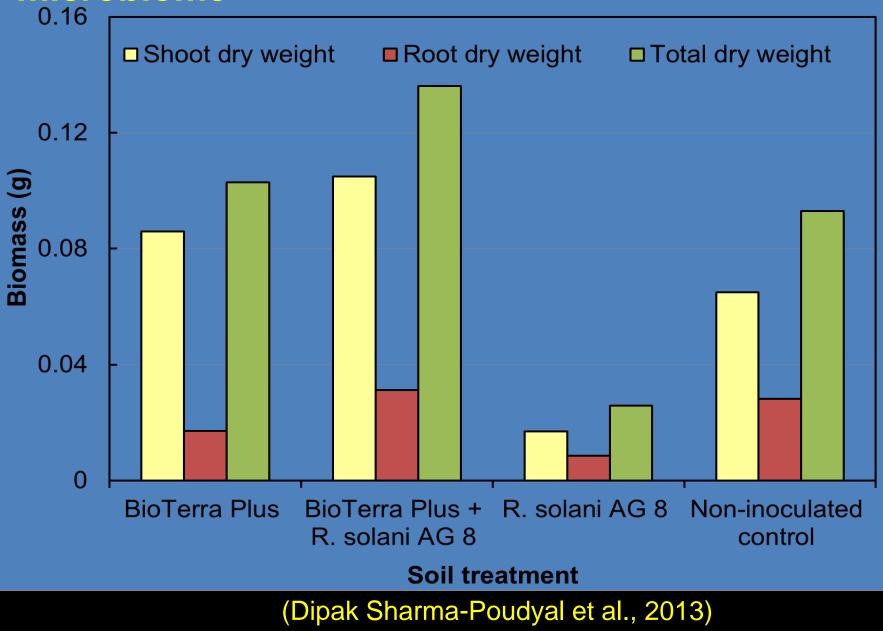
#### Ectomycorrhizae associated with ~3-5% of seed plants



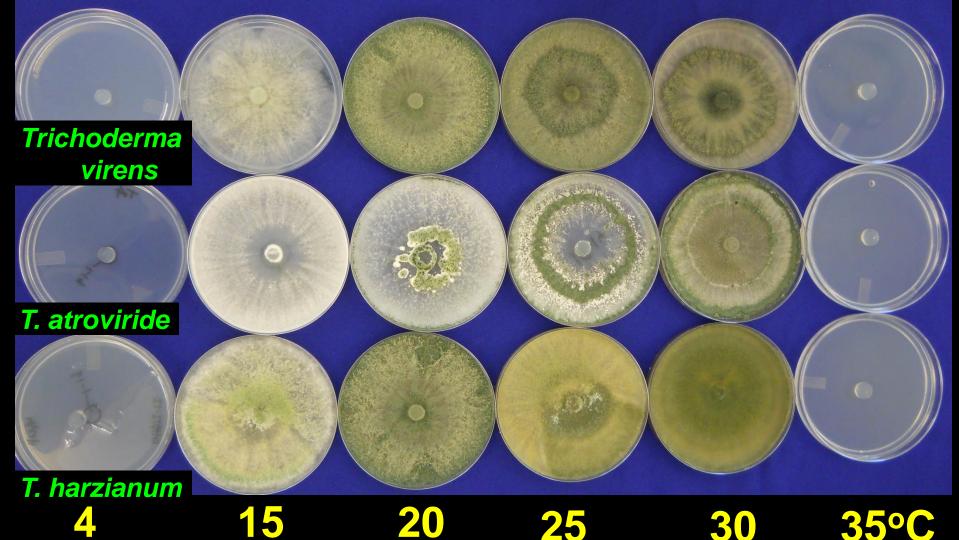

# Tolerance to biological and environmental stresses

- Nutritional
- Drought
- Pathogens/Pests

#### **Benefit to soil**


- Stabilization of soil aggregates (production of glomalin~1.5% of dry soil weight)
- Root exudation and abundance of soil bacteria

#### **Resiliency through enhancement of beneficial**

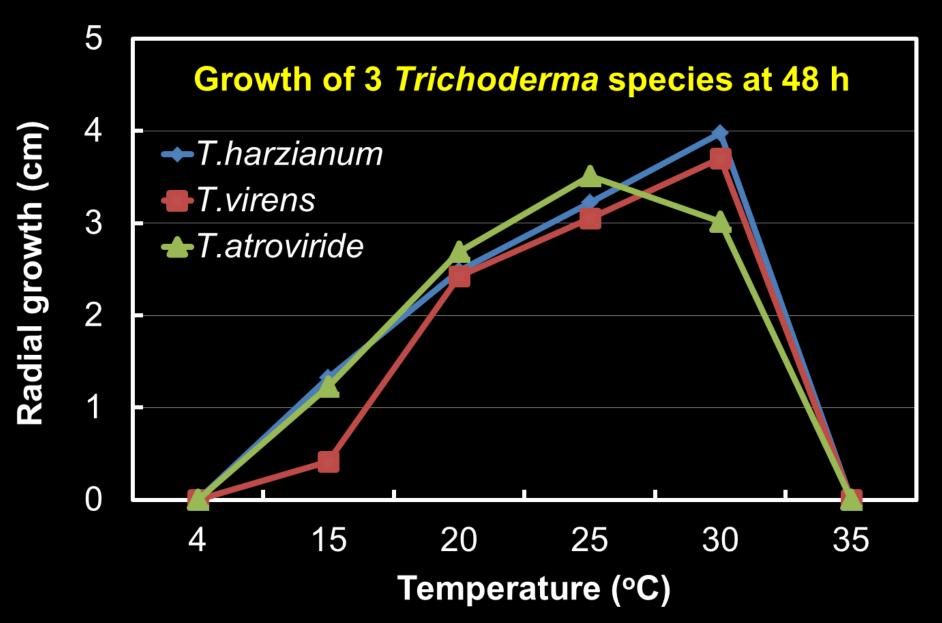


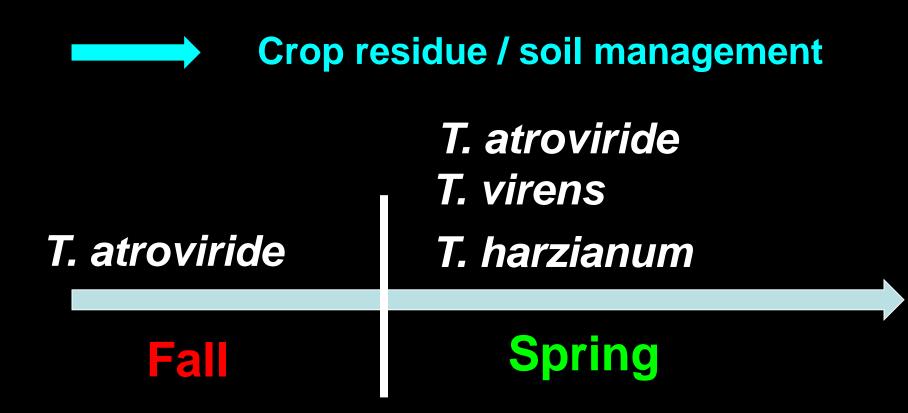

Soil treatment

(Ruiz-Lozano & Azcón, 1996))



#### Combining function and ecology





#### Combining function and ecology



Trichoderma virens

Trichoderma atroviride Trichoderma harzianum





#### Climate Change Effects on Weeds and Weed Management

#### Climate Change Assumptions for this Talk

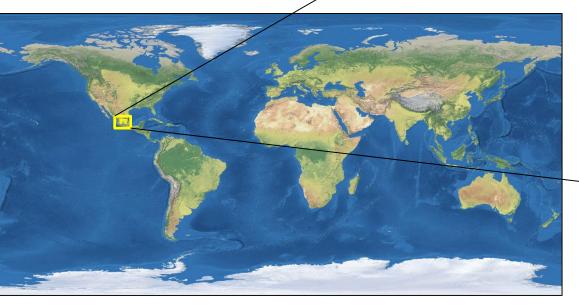
- Increase in atmospheric CO<sub>2</sub>
- Increase in average annual temperature
- Increased risk of drought
- Increase in extreme precipitation events

Source:

Climate Change and Vegetation in Southwestern North America, David Gutzler, 2013, NM Vegetation Management Association <u>http://www.nmvma.com/</u>

#### Climate Change Effects on Weeds and Weed Management

- 1. The effectiveness of weed control tactics will change
- 2. Existing weed threats may get worse
- 3. New weed threats will arise; however, predicting specific species is difficult


#### Climate Change Effects on Weeds and Weed Management

- 1. The effectiveness of weed control tactics will change
- 2. Existing weed threats may get worse
- 3. New weed threats will arise; however, predicting specific species is difficult

#### Climate Change Effects on Weeds and Weed Management

- 1. The effectiveness of weed control tactics will change
- 2. Existing weed threats may get worse
- 3. New weed threats will arise; however, predicting specific species is difficult

#### New Weed Threats – Range Shifts



*Physalis patula* Mill. Agricultural weed in Mexico



*Could it become a problem in New Mexico?* 

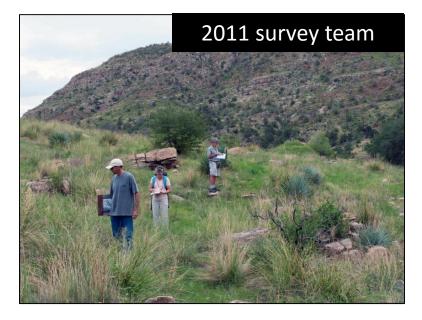
http://www.boldsystems.org/index.php/Taxbrowser\_Taxonpage?taxid=732255 http://bio.uaq.mx/municipioQro/fichas.php?idA=44&n\_img=1&F=1

#### New Weed Threats Will Arise **Range Shifts in Natural Environments**

Plant community surveys in Santa Catalina Mountains

- **Elevation zones** •
- First conducted in 1963, • repeated in 2011
- Mean annual temperature • at study site increased 0.45°F decade<sup>-1</sup>

Lake Havasu City




http://uanews.org/story/warming-climate-pushes-plants-up-the-mountain

#### New Weed Threats Will Arise Range Shifts in Natural Environments

- Results revealed large changes in elevation of common montane plants.
- Elevation changes were speciesspecific, but, in general, plant species showed significant upward movement of lower elevation boundaries.

Ecology & Evolution 3:3307-3319

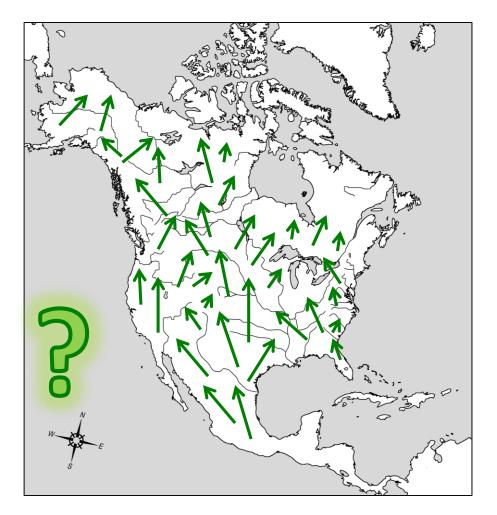


http://uanews.org/story/warming-climate-pushes-plants-up-the-mountain

#### New Weed Threats Will Arise Range Shifts in Natural Environments

Alligator juniper (Juniperus deppeana) elevation shifts on Santa Catalina Mountains

- 1963 first found at 3000 ft
- 2011 first found at 5000 ft

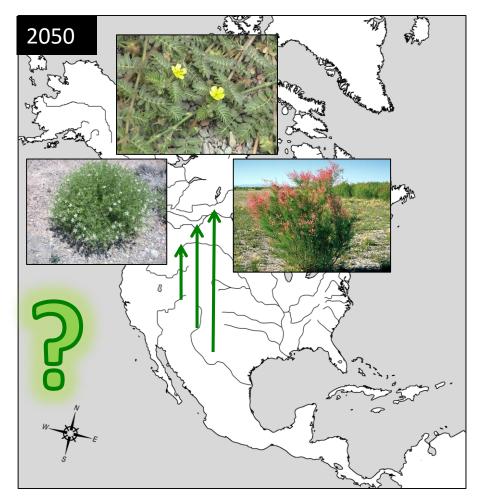



In 2011, alligator junipers first appeared at 5000 feet.



Below 5000 feet, hundreds of dead alligator junipers, reflecting the cooler conditions of the past

Ecology & Evolution 3:3307-3319




#### **BIOCLIMATIC NICHE MODELING**

<u>Niche</u> – optimum environment for growth, reproduction and survival

- Soil characteristics
- Competition
- Climate

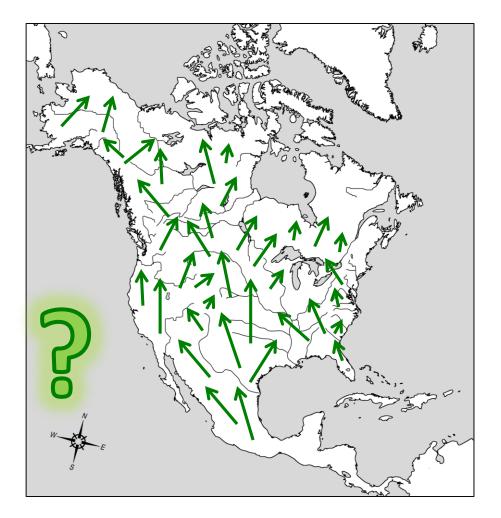
<u>Bioclimatic niche</u> – area where climate is suitable for a species



http://www.colostate.edu/Dept/CoopExt/Adams/ag/image/puncturevine.jpg

#### **BIOCLIMATIC NICHE MODELING**

*Example:* Alberta in 2050 is expected to have suitable habitat for


- African rue
- puncturvine
- saltcedar

Models do not account for:

- Edaphic factors
- Competition
- Evolutionary change
- Climate change effects on management

http://weeds.nmsu.edu/factsheet.php?weed\_id=57

https://www.blm.gov/style/medialib/blm/wy/programs/invasiveplants/pics.Par.4155.Image.432.310.1.gif



**GENERAL CONSENSUS:** Rising temperatures will cause species range boundaries to be moved further toward the poles

*Physalis patula* Mill. Agricultural weed in Mexico



Could it become a problem in New Mexico? Maybe – Worth consideration

Weeds of Mexico website: http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas-mexico.htm Climate Change Effects on Weeds and Weed Management

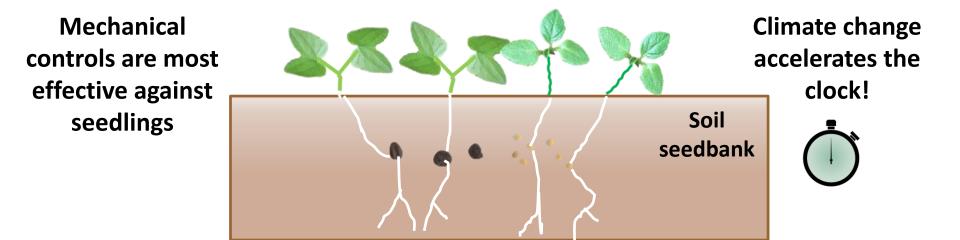
- 1. The effectiveness of weed control tactics will change
- 2. Existing weed threats may get worse
- 3. New weed threats will arise; however, predicting specific species is difficult

## Change in Weed Control Outcomes

- Climate change is expected to influence efficacy of:
  - Mechanical weed control
  - Herbicides
  - Biocontrol

#### Change in Weed Control Outcomes Mechanical Weed Control

- Warmer temperatures accelerate growth and development of seedlings *Weed Science* 51:869-875
- Elevated CO<sub>2</sub> stimulates:
  - Tiller production in grasses *New Phytologist* 150:261-273
  - Root growth Plant, Cell & Environment 15:749-752
  - Leaf growth, especially in C3 plants Global Change Biology 5:807-837


#### Change in Weed Control Outcomes Mechanical Weed Control

- Warmer temperatures accelerate growth and development of seedlings *Weed Science* 51:869-875
- Elevated CO<sub>2</sub> stimulates:
  - Tiller production in grasses New Phytologist 150:261-273
  - Root growth Plant, Cell & Environment 15:749-752
  - Leaf growth, especially in C3 plants Global Change Biology 5:807-837

Plants where the initial steps in photosynthesis builds a three-carbon compound.

#### Change in Weed Control Outcomes Mechanical Weed Control

- Warmer temperatures accelerate growth and development of seedlings *Weed Science* 51:869-875
- Elevated CO<sub>2</sub> stimulates:
  - Tiller production in grasses New Phytologist 150:261-273
  - Root growth Plant, Cell & Environment 15:749-752
  - Leaf growth, especially in C3 plants Global Change Biology 5:807-837



#### Change in Weed Control Outcomes Herbicides

| Mode of Action           | Example                  | Hypothesized response to increases in CO <sub>2</sub> and temperature <sup>1</sup> |
|--------------------------|--------------------------|------------------------------------------------------------------------------------|
| Photosynthetic inhibitor | Atrazine<br>Bentazon     | Increased efficacy                                                                 |
| Pigment inhibitor        | Clomazone<br>Flumioxazin | Increased efficacy                                                                 |
| Amino acid inhibitor     | Glyphosate               | Decreased efficacy <sup>2</sup>                                                    |

<sup>1</sup> Agriculture, Ecosystems and Environment 231:304-309 <sup>2</sup> Supported by data

#### Change in Weed Control Outcomes Herbicides

- Glyphosate efficacy is reduced under increased CO<sub>2</sub>
  - Common lambsquarters and other C3 annual weeds Weed Science 47:608-615; Crop Science 46:1354-1359
  - Quackgrass Australian Journal of Plant Physiology 27:159-166
  - Canada thistle Weed Science 52:384-388

#### Change in Weed Control Outcomes Herbicides

- Glyphosate efficacy is reduced under increased CO<sub>2</sub>
  - Common lambsquarters and other C3 annual weeds
     Weed Science 47:608-615; Crop Science 46:1354-1359
  - Quackgrass Australian Journal of Plant Physiology 27:159-166
  - Canada thistle *Weed Science* 52:384-388
- Canada thistle responses to elevated CO<sub>2</sub>
- Increase allocation to roots
- Reduced glyphosate efficacy



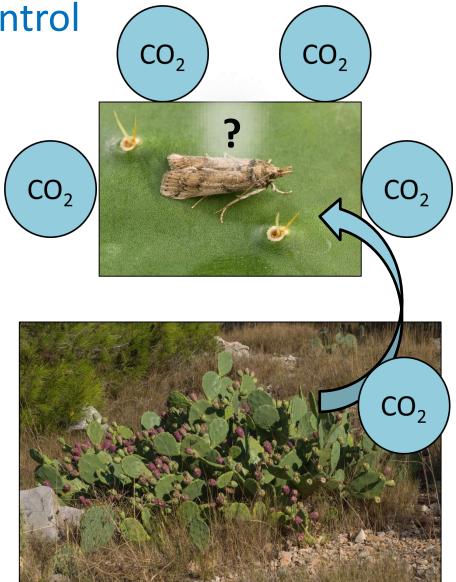
2-yr underground growth of Canada thistle

https://www.btny.purdue.edu/Pubs/WS/CanadaThistle/CanadaThistle.html

#### Change in Weed Control Outcomes Biocontrol

Climate change affects<sup>1</sup>:

- Temporal and spatial synchrony between biocontrol agents and invasive plants
- Location cues for biocontrol agents
- Nutrition for biocontrol agents


### Change in Weed Control Outcomes Biocontrol

#### Climate change affects<sup>1</sup>:

- Temporal and spatial synchrony between biocontrol agents and invasive plants
- Location cues for biocontrol agents
- Nutrition for biocontrol agents

#### Biocontrol of prickly pear cactus in Australia

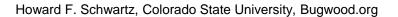
https://commons.wikimedia.org/w/index.php?curid=30044580 https://commons.wikimedia.org/w/index.php?curid=1214897



*Oecologia* 102:341-352

#### Change in Weed Control Outcomes Biocontrol

#### Biocontrol of field bindweed with gall mites




icultural Research Service, Bugwood.org



Bob Hammon, Colorado State University, Bugwood.org

How does increased temperature, altered precipitation and elevated CO<sub>2</sub> affect gall mite biocontrol of bindweed?



Managing Aceria malherbae Gall Mites for Control of Field Bindweed NMSU Cooperative Extension Service Circular 600

# Climate Change Effects on Weeds and Weed Management

- 1. The effectiveness of weed control tactics will change
- 2. Existing weed threats may get worse
- 3. New weed threats will arise; however, predicting specific species is difficult

# Climate Change Effects on Weeds and Weed Management

- What can be done?
  - Scout for new weed threats
     PROMPT ACTION IS CRITICAL
  - Monitor growth of problem weeds
  - Evaluate weed control outcomes
     DON'T ASSUME THAT TACTICS WILL REMAIN EFFECTIVE
  - Be prepared for weed control following extreme precipitation events