Biochar Production and Soil Application

NEW MEXICO AGRICULTURE SUSTAINABILITY WORKSHOP JUNE 27, 2022

Catherine "Catie" Brewer, Associate Professor

College of Engineering

Chemical & Materials Engineering

BE BOLD. Shape the Future.

Acknowledgements

- Collaborators: John Idowu, Soum Sanogo, April Ulery, Robert Flynn, KC Carroll, Kevin Lombard
- NMSU faculty and staff at Leyendecker and Farmington Science Centers, and in Plant & Environmental Sciences
- CHME and PES students, especially Lindsay Keller, Kobby Sarpong, Yunhe Zhang, Mohammed Omer
- Funding from NMSU IEE, NM WRRI, NASA KSC, USDA, NMDA, NM AES, NM AMP, and USBOR

Biochar

Biochar is a solid material obtained from the carbonization thermochemical conversion of biomass in an oxygen-limited environments.

In more technical terms, biochar is produced by **thermal decomposition** of organic material (**biomass** such as wood, manure or leaves) under **limited supply of oxygen (O₂)**, and at relatively low temperatures (**<700°C**). This process mirrors the production of charcoal, which is perhaps the most ancient industrial technology developed by humankind. Biochar can be distinguished from charcoal—used mainly as a fuel—in that **a primary application is use as a soil amendment** with the intention to improve soil functions and to reduce emissions from biomass that would otherwise naturally degrade to greenhouse gases.

International Biochar Initiative (<u>https://biochar-international.org/faqs/</u>)

Making Biochar (2 of the Steps of Combustion)

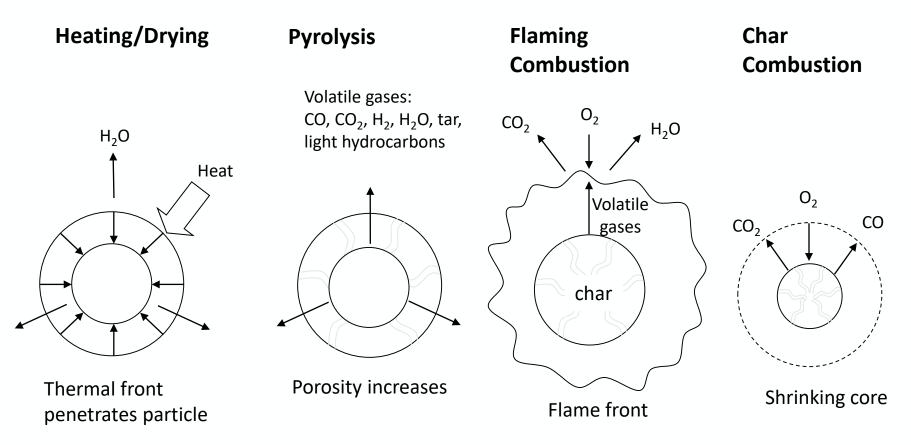
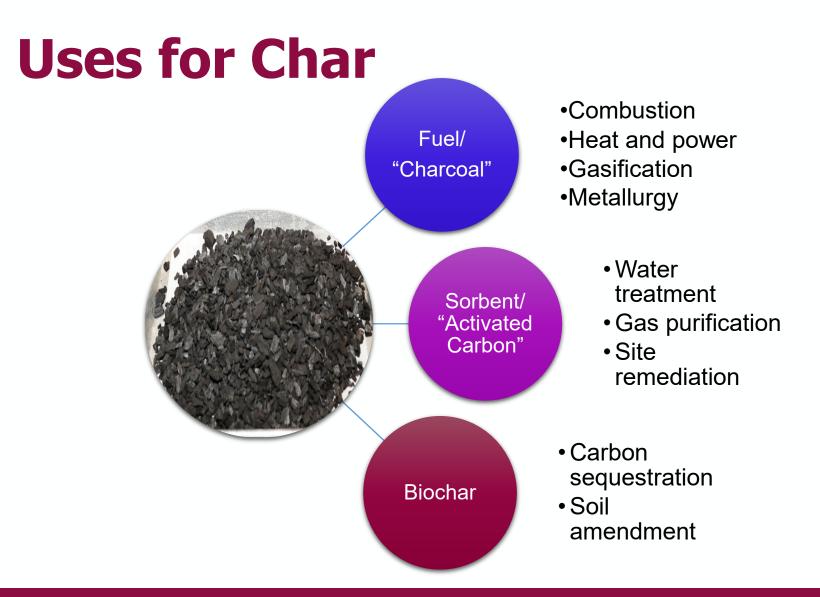
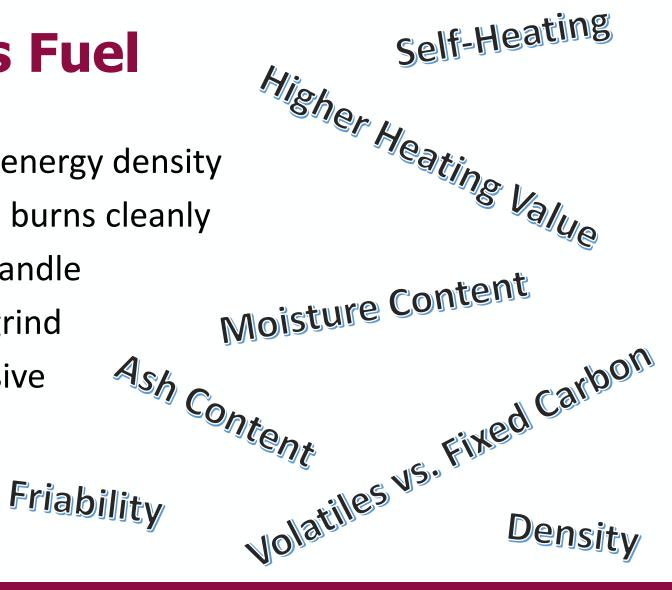



Figure: Robert C. Brown



Char as Fuel

- Has a high energy density
- Ignites and burns cleanly
- Is safe to handle
- Is easy to grind
- Is inexpensive

particle Size

Char as Sorbent

- Has high surface area
- Equilibrium Capacity Has surface chemistry tuned to adsorbate

Pore size

Porosity

lsotherm

Regeneration

 Has high capacity and selectivity Surface Functionality

Friability

- Enables fast separation
- Is inexpensive

particle Size

Char as C Sequestration H:C vs. O:C

- Has high carbon content
- Carbon Stability Is recalcitrant to microbial decomposition

Models

Half-Life

evrolvsis Temperature

Kinetics

- Is resistant to abiotic oxidation
- Is measurable
- Is inexpensive Labile Carbon

Char as Soil Amendment "BIOCHAR"

BE BOLD. Shape the Future.

Char as Soil Amendment (Not Fertilizer)

Soil Amendment

- Changes soil properties which can improve plant growth
- Has some short-term effects, but more often, long-term impacts
- May contain some nutrients

Fertilizer

- Provides plants with available macro- (N, P, K) and/or micro-nutrients (Ca, Mg, Fe, Zn, Cu, Mn, etc.)
- Is expected to result in effects in the shortterm/growing season

Biochar Impacts in Soils

Nutrient Use Efficiency Microbial Activity Soil Organic Matter Plant-Available Water Long-Term Crop Yields

Fertilizer/Irrigation Needs Greenhouse Gas Emissions Nutrient Leaching Soil Bulk Density

Biochar Quality

NO TWO CHARS ARE THE SAME

BE BOLD. Shape the Future.

High quality biochar is:

- Black in color
- Consistent
- Not greasy
- Not smelly
- Friable
- Made from clean feedstock (free of heavy metals)
- Tailored to the application

Potential Pitfalls

Undercooked char	Nutrient immobilization in the soil inhibiting plant growth
Poor volatiles management	Smoke/air pollution; condensed volatiles on char surface inhibit germination/growth
Contaminated feedstock	Heavy/toxic metals in soil that leach into environment and/or plants
Poor oxygen control	Low biochar yields and/or low retention of biomass carbon in char
Small particle sizes	Dust—and lots of it
Insufficient cooling	Combustion of newly-made char upon exposure to air

Zhang, et al. 2016, *Agriculture*, 6 (1), DOI: 10.3390/agriculture6010010

Potential Pitfalls

High ash content	(Undesirable) increase in soil pH
High sodium content	Increased risk for soil structure problems and plant stress
High salt content	Increased risk for plant stress due to soil salinity
High purchase costs	Uneconomical relative to short/long-term benefits
Insufficient field study information	Guidance applicability limited to specific soils, biochars, and crops

Zhang, et al. 2016, *Agriculture*, 6 (1), DOI: 10.3390/agriculture6010010

Biochar Soil Studies at NMSU

- Multiple feedstock soil incubation (2014-2016)
- Spacecraft waste pyrolysis (2015-2018)
- Pecan residue utilization (2016-2017)
- Halophyte biochar leaching (2016-2018)
- Hybrid poplar tree growth (2018-2019)
- Pinto bean field study (2017-2022)

BE BOLD. Shape the Future.

• Leyendecker long-term soil health (2022+)

Zhang, et al. 2016, Agriculture, 6 (1), 10.

Idowu, et al., 2017, *Comm. Soil Sci Plant Analysis*, 48 (15), 1781-1791. Payne, et al., 2018, *J Analytical Appl. Pyrolysis*, 135,184-188. Sarpong, et al., 2019, *Sci Total Environ.*, 688, 701-707.

Contact Information

Dr. Catherine "Catie" Brewer Chemical & Materials Engineering Jett Hall 252 <u>https://wordpress.nmsu.edu/cbrewer/</u> 575-646-8637

cbrewer@nmsu.edu

